Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is \(\tan^{-1} \sqrt {2}\).

Can you answer this question?

1 Answer

0 votes
  • $V=\large\frac{1}{3}$$\pi r^2h$
  • $\large\frac{d}{d\theta}$$(\sin \theta)=\cos \theta$
  • $\large\frac{d}{d\theta}$$(\cos\theta)=-\sin \theta$
Step 1:
Let $V$ be the volume $l$ be the slant height and $\theta$ be the semi-vertical angle of a cone.
Volume of the cone $V=\large\frac{1}{3}$$\pi r^2h$
Vertical height $h=l\cos \theta$
Radius $r=l\sin \theta$
By Substituting the value of $h$ and $r$ we get
$V=\large\frac{1}{3}$$\pi r^2h$
$\;\;=\large\frac{1}{3}$$\pi(l\sin \theta)^2.l\cos\theta$
$\;\;=\large\frac{1}{3}$$\pi(l^2\sin ^2\theta).l\cos\theta$
$\;\;=\large\frac{1}{3}$$\pi l^3\sin ^2\theta.\cos\theta$
Step 2:
By differentiating with respect to $\theta$ we get
$\large\frac{dV}{d\theta}=\frac{1}{3}$$\pi l^3[2\sin \theta.\cos \theta.\cos \theta-\sin^2\theta.\sin\theta]$
$\qquad=\large\frac{1}{3}$$\pi l^3[2\sin \theta.\cos^2\theta-\sin^3\theta)$
$\qquad=\large\frac{1}{3}$$\pi l^3\sin\theta[2\cos^2\theta-\sin^2\theta]$
$\tan\theta=\sqrt 2$
Step 3:
We can write $2\cos^2\theta-\sin^2\theta$=$(\sqrt 2\cos \theta+\sin\theta) (\sqrt 2\cos\theta-\sin\theta)$
Further $\large\frac{dV}{d\theta}=\frac{1}{3}$$\pi l^3\sin\theta(\sqrt 2\cos \theta+\sin\theta)\times (\sqrt 2\cos\theta-\sin\theta)$
$\qquad\;\qquad=\large\frac{1}{3}$$\pi l^3\sin\theta\cos^2\theta(\sqrt 2+\tan\theta)(\sqrt 2-\tan \theta)$
$\qquad\;\qquad=\large\frac{1}{3}$$\pi l^3\sin\theta\cos^2\theta(\tan\theta-\sqrt 2)(\tan \theta+\sqrt 2)$
Step 4:
When $\theta$ is slightly < $\tan^{-1}\sqrt 2$
$\sin \theta\cos^2\theta=+ve$
$\tan\theta-\sqrt 2=-ve$
$\tan\theta+\sqrt 2=+ve$
When $\theta$ is slightly > $\tan^{-1}\sqrt 2$
$\sin \theta\cos^2\theta=+ve$
$\tan\theta-\sqrt 2=+ve$
$\tan\theta+\sqrt 2=+ve$
$\large\frac{dV}{d\theta}$ changes from +ve to -ve
$\therefore$ V is maximum at $\theta=\tan^{-1}\sqrt 2$
answered Aug 9, 2013 by sreemathi.v
edited Aug 19, 2013 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App