Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Show that semi-vertical angle of right circular cone of given surface area and maximum volume is \( \sin^{-1} \left(\frac{1}{3}\right)\)

Can you answer this question?

1 Answer

0 votes
  • Surface Area =$\pi r l+\pi r^2$
  • $V=\large\frac{1}{3}$$\pi r^2h$
Step 1:
Let $r$ be the radius $l$ be the slant height and $h$ be the vertical height of a cone of semi-vertical angle $\alpha$
Surface area $S=\pi r l+\pi r^2$------(1)
$l=\large\frac{S-\pi r^2}{\pi r}$
The volume of the cone $V=\large\frac{1}{3}$$\pi r^2h$
$\qquad\qquad\qquad\qquad\quad=\large\frac{1}{3}$$\pi r^2\sqrt{l^2-r^2}$
$\qquad\qquad\qquad\qquad\quad=\large\frac{\pi r^2}{3}$$\sqrt{\large\frac{(S-\pi r^2)^2}{\pi^2r^2}-r^2}$
$\qquad\qquad\qquad\qquad\quad=\large\frac{\pi r^2}{3}$$\sqrt{\large\frac{(S-\pi r^2)^2-\pi^2r^4}{\pi^2r^2}}$
$\qquad\qquad\qquad\qquad\quad=\large\frac{\pi r^2}{3}$$\large\frac{\sqrt{S^2-2\pi Sr^2+\pi^2r^4-\pi^2r^4}}{\pi r}$
$\qquad\qquad\qquad\qquad\quad=\large\frac{r}{3}$$\sqrt{S^2-2\pi Sr^2+\pi^2r^4-\pi^2 r^4}$
$\qquad\qquad\qquad\qquad\quad=\large\frac{r}{3}$$\sqrt{S(S-2\pi r^2)}$
Step 2:
$V^2=\large\frac{r^2}{9}$$S(S-2\pi r^2)$
$V^2=\large\frac{S}{9}$$(Sr^2-2\pi r^4)$
$\large\frac{dV^2}{dr}=\frac{S}{9}$$[2Sr-8\pi r^3]$
$\large\frac{d^2V^2}{dr^2}=\frac{S}{9}$$[2S-24\pi r^2]$------(2)
Now $\large\frac{dV^2}{dr}$$=0$
$\Rightarrow \large\frac{S}{9}$$(2Sr-8\pi r^3)=0$
$\Rightarrow (S-4\pi r^2)=0$
Putting $S=4\pi r^2$ in (2)
$\large\frac{d^2V}{dr^2}=\frac{S}{9}$$[8\pi r^2-24\pi r^2]=-ve$
$\Rightarrow V$ is maximum when $S=4\pi r^2$
Step 3:
Putting the value in equ(1)
$4\pi r^2=\pi r l+\pi r^2$
$4\pi r^2-\pi r^2=\pi r l$
$3\pi r^2=\pi r l$
$\sin \alpha=\large\frac{1}{3}$
Thus $V$ is maximum when $S=$constant
answered Aug 9, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App