logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

Construct a $2 \times 2$ matrix, $A=[a_{ij}],$whose elements are given by: $a_{ij}=\frac{(i+j)^2}{2}\qquad$

$\begin{array}{1 1} \begin{bmatrix}1 & \frac{9}{2}\\\frac{9}{2} & 8\end{bmatrix} \\\begin{bmatrix}2 & \frac{9}{2}\\\frac{9}{2} & 8\end{bmatrix} \\ \begin{bmatrix}2 & \frac{9}{3}\\\frac{9}{2} & 8\end{bmatrix} \\ \begin{bmatrix}2 & \frac{9}{2}\\\frac{9}{2} & -8\end{bmatrix} \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • In general $a_{2\times 2}$ matrix is given by\[\begin{bmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{bmatrix}\]
  • Elements are given by $a_{ij}=\frac{(i+j)^2}{2}$, where (i, j) can be either (1,1), (1,2), (2,2) or (2,1)
Given, $a_{ij}=\frac{(i+j)^2}{2}, \Rightarrow$
$a_{11}=\frac{(1+1)^2}{2}=\frac{2^2}{2}=\frac{4}{2}=2.$
$a_{12}=\frac{(1+2)^2}{2}=\frac{3^2}{2}=\frac{9}{2}.$
$a_{21}=\frac{(2+1)^2}{2}=\frac{3^2}{2}=\frac{9}{2}.$
$a_{12}=\frac{(2+2)^2}{2}=\frac{4^2}{2}=\frac{16}{2}=8.$
Hence the required matrix is given by $A=\begin{bmatrix}2 & \frac{9}{2}\\\frac{9}{2} & 8\end{bmatrix}$
answered Feb 27, 2013 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...