info@clay6.com
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XII  >>  Math  >>  Matrices
Answer
Comment
Share
Q)

Find the values of x,y and z from the following equations:$ (ii)\;\begin{bmatrix}x+y & z\\5+z & xy\end{bmatrix}=\begin{bmatrix}6 & 2\\5 & 8\end{bmatrix}\qquad$

1 Answer

Comment
A)
Need homework help? Click here.
Toolbox:
  • If the order of 2 matrices are equal, their corresponding elements are equal, i.e, if $A_{ij} = B_{ij}$, then any element $a_{ij}$ in matrix A is equal to corresponding element $b_{ij}$ in matrix B.
Given $\begin{bmatrix}x+y & 2\\5+z & xy\end{bmatrix}=\begin{bmatrix}6 & 2\\5 & 8\end{bmatrix}.$ Since these matrices are equal, we can an obtain the value of x,y,z by comparing the matrices' corresponding elements.
By comparing the given two matrices of equal order, we can see that:
$x+y = 6$ (i)
$5+z = 5$ (ii)
$xy = 8$ (iii)
From (i) we get $x = 6-y$. Substituting in (iii), we get $(6-y)y = 8$ $\rightarrow$ $y^2-6y-8=0$.
Solving for $y$, $(y-2)(y-4) = 0 $ $\rightarrow$ $y=2$ or $y=4$.
Given than $xy=8$, If $y=2$, then $x=4$ and if $y=4$, then $x=2$.
Solving (ii), we get $5+z = 5$. $\rightarrow$ $z = 0$.
Solving for x, y and z we get two solutions $(x,y,z) = (2,4,0)$ or $(4,2,0)$.
Home Ask Homework Questions
...