logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

Compute the following $ (iv)\;\begin{bmatrix}\cos^2x & \sin^2x\\ \sin^2x & \cos^2x\end{bmatrix}+\begin{bmatrix}\sin^2x & \cos^2x\\ \cos^2x & \sin^2x\end{bmatrix}$

Note: This is the 4th part of a 4 part question, which is split as 4 separate questions here.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • The sum $A+B$ of two $m$-by-$n$ matrices $A$ and $B$ is calculated entrywise: $(A + B)_{i,j} = A_{i,j} + B_{i,j}$ where 1 $\leq$ i $\leq$ m and 1$\leq$ j $\leq$ n.
  • $\sin^2x+\cos^2x = 1$
$\begin{bmatrix}\cos^2x & \sin^2x\\ \sin^2x & \cos^2x\end{bmatrix}+\begin{bmatrix}\sin^2x & \cos^2x\\ \cos^2x & \sin^2x\end{bmatrix} = \begin{bmatrix}\cos^2x + \sin^2x& \sin^2x+\cos^2x\\ \sin^2x +cos^2x& \cos^2x+\sin^2x\end{bmatrix}$.
Since $\sin^2x+\cos^2x = 1, \begin{bmatrix}\cos^2x & \sin^2x\\ \sin^2x & \cos^2x\end{bmatrix}+\begin{bmatrix}\sin^2x & \cos^2x\\ \cos^2x & \sin^2x\end{bmatrix} = \begin{bmatrix} 1&1 \\ 1&1 \end{bmatrix}$.

 

answered Feb 27, 2013 by balaji.thirumalai
edited Dec 20, 2013 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...