Home  >>  CBSE XII  >>  Math  >>  Matrices

# Compute the indicated products: $(i)\;\begin{bmatrix}a & b\\-b & a\end{bmatrix}\begin{bmatrix}a &-b\\b & a\end{bmatrix}$

This question has 6 parts and each part has been answered separately here.

Toolbox:
• Multiplication of two matrices is defined only if the number of columns of the left matrix is the same as the number of rows of the right matrix.
• If A is an m-by-n matrix and B is an n-by-p matrix, then their matrix product AB is the m-by-p matrix whose entries are given by dot product of the corresponding row of A and the corresponding column of B:
• $\begin{bmatrix}AB\end{bmatrix}_{i,j} = A_{i,1}B_{1,j} + A_{i,2}B_{2,j} + A_{i,3}B_{3,j} ... A_{i,n}B_{n,j}$
$\begin{bmatrix}a & b\\-b & a\end{bmatrix}\begin{bmatrix}a &-b\\b & a\end{bmatrix} = \begin{bmatrix}a\times a+b\times b & a\times -b+b\times a\\-b\times a+a\times b & -b\times -b+a\times a\end{bmatrix}$
$\begin{bmatrix}a & b\\-b & a\end{bmatrix}\begin{bmatrix}a &-b\\b & a\end{bmatrix} = \begin{bmatrix}a^2+b^2 & -ab+ab\\-ab+ab & b^2+a^2\end{bmatrix}$
$\begin{bmatrix}a & b\\-b & a\end{bmatrix}\begin{bmatrix}a &-b\\b & a\end{bmatrix} = \begin{bmatrix}a^2+b^2 & 0\\0 & b^2+a^2\end{bmatrix}$