logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Give an example of a map$(iii)\quad which\; is\; neither\;one-one\;nor\;onto$

Note: This is the 3rd  part of a  3 part question, which is split as 3 separate questions here.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • 1. function $:A \to B$ is one-one if $f(x)=f(y) =>x=y\qquad x,y \in A$
  • 2.A function $f:A \to B$ into if for every $y \in B$ then exists $ x \in $ such that $f(x)=y$
(iii) Let $ f:R \to R$ defined by $f(x)=1+x^2$
 
Let $x_1 x_2 \in R $ such that $f(x_1)=f(x_2)$
 
$ 1+x_1^2=1+x_2^2$
 
$ x_1^2=x_2^2$
 
$x_1=\pm x_2$
 
Since $f(x_1)=f(x_2)$ does not imply $x_1=x_2$
 
Hence f is not one-one
 
Consider an element -2 in codomain R.
 
We see that there does not exists any $ x \in R$
 
f defined by $ R \to R\; f(x)=1+x^2$ is not one one and not onto
 

 

 

answered Mar 4, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...