logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XII  >>  Math  >>  Probability

A and B are two events such that P (A) $\neq$ 0. Find P(B|A), if (i) A is a subset of B (ii) A $\cap$ B = $\phi$

$\begin{array}{1 1}(i) 1 \quad (ii) 0 \\ (i) 0 \quad (ii) 1 \\ (i) 1 \quad (ii) 1 \\(i) 0 \quad (ii) 0 \end{array} $

1 Answer

Toolbox:
  • If A is a subset of B, (A $\subset$ B), then P (A $\cap$ B) = P (A)
  • $P \large(\frac{B}{A}) =$$ \large (\frac{P(A\;\cap\; B)}{P(A)})$
(i) If A is a subset of B, $(A \subset B), \rightarrow P (A \cap B) = P (A)$
Therefore, $P \large(\frac{B}{A}) =$$ \large (\frac{P(A\;\cap\; B)}{P(A)}) = \frac{P(A)}{P(A)} $$= 1$
(ii) $A \cap B = \phi \rightarrow P (A \cap B) = 0$
Therefore, $P \large(\frac{B}{A}) =$$ \large (\frac{P(A\;\cap\; B)}{P(A)}) = 0$
answered Mar 12, 2013 by poojasapani_1
edited Jun 22, 2013 by balaji.thirumalai
 

Related questions

...