Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Let A=[-1,1].Then,dicuss whether the following functions defined on A are one-one,onto or bijective$(iii)\quad h(x)\;=\;x|x| $

Note: This is the 3rd part of a  4 part question, which is split as 4 separate questions here.

Can you answer this question?

1 Answer

0 votes
  • 1.A function f on set A is one-one if $f(x)=f(y) =>x,y \in A$
  • 2.A function f on set A is onto if for every $ y \in A$ then exists $x \in A$ such that $f(x)=y$
  • 3.A function is bijective if it is both one-one and onto
(iii)$h(x)=x |x| \qquad x \in [-1,1]$
case I when x takes -ve values
Let $x_1=-p_1\qquad x_2=-p_2\qquad p_1p_2 +ve$
Let $ h(x_1)=h(x_2)$
$-p_1 \times p_1=-p_2p_2$
$=>p_1=p_2 \qquad (p_1,p_2 +ve)$
Let $h(x_1)=h(x_2)$
case I when x takes +ve values
$x_1=q_1 \qquad x_2=q_2$
Hence h is a one one function
Let $y \in [-1,1]$
$=-x^2$ if y is -ve
$=x^2$ when y is +ve
and since $(-y)=x^2\; for\;y -ve$
$ x =\sqrt {-y} \qquad \in [-1,1]\; since\; y \;is\; -ve [-1,1]$
and $y=x^2$
$x=\sqrt y$ when y is +ve [-1,1]
Hence for every $ y \in [-1,1]$ then exists an element x in [-1,1] such that $R(x)=y$
R is onto function
Hence R is both one-one and onto



answered Mar 4, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App