logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

For the matrices $A$ and $B$, verify that $(AB)' = B'A'$ , where $$ \text{ (ii) } A = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \text{ , } B = \begin{bmatrix} 1 & 5 & 7 \end{bmatrix} $$

This question has multiple parts. Therefore each part has been answered as a separate question on Clay6.com
Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If A is an m-by-n matrix and B is an n-by-p matrix, then their matrix product AB is the m-by-p matrix whose entries are given by dot product of the corresponding row of A and the corresponding column of B: $\begin{bmatrix}AB\end{bmatrix}_{i,j} = A_{i,1}B_{1,j} + A_{i,2}B_{2,j} + A_{i,3}B_{3,j} ... A_{i,n}B_{n,j}$
  • If A_{i,j} be a matrix m*n matrix , then the matrix obtained by interchanging the rows and column of A is called as transpose of A.
(ii)$A = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$
$B=\begin{bmatrix} 1 & 5 & 7 \end{bmatrix} $
LHS:
$AB= \begin{bmatrix} 0 \\ 1 \\ 2\end{bmatrix}\begin{bmatrix} 1 & 5 & 7 \end{bmatrix} $
$\;\;\;=\begin{bmatrix} 0\times 1 & 0\times 5 & 0\times 7\\1\times 1 & 1\times 5 & 1\times 7\\2\times 1 & 2\times 5 & 2\times 7 \end{bmatrix}=\begin{bmatrix}0& 0 &0\\1 & 5 &7\\2& 10 & 14\end{bmatrix}$
Interchange the rows column to get the transpose.
$\;\;\; (AB)'=\begin{bmatrix}0& 1 &2\\0 & 5 &10\\0& 7 & 14\end{bmatrix}$
RHS:
$B'A'=\begin{bmatrix} 1 & 5 & 7 \end{bmatrix}'\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}'$
$B'A'=\begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}'\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$
$\;\;\;=\begin{bmatrix} 1\times 0 & 1\times 1 & 1\times 2\\5\times 0 & 5\times 1 & 5\times 2\\7\times 0 & 7\times 1 & 7\times 2 \end{bmatrix}$
$\;\;\;=\begin{bmatrix}0& 1 &2\\0 & 5 &10\\0& 7 & 14\end{bmatrix}$
LHS=RHS

 

answered Mar 6, 2013 by sharmaaparna1
edited Mar 13, 2013 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...