logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

For the matrix $ A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} $ , verify that $(ii) (A - A') $ is a skew symmetric matrix.

This question has multiple parts. Therefore each part has been answered as a separate question on Clay6.com
Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • A square matrix A=[a$_{ij}$] is said to be symmetric if A'=A that is $[a_{ij}]=[a_{ji}]$ for all possible value of i and j.
  • A square matrix A=[a$_{ij}$] is said to be skew symmetric if A'=-A that is $[a_{ij}]= -[a_{ji}]$ for all possible value of i and j.
  • The diagonal elements of a skew symmetric matrix is always equal to zero
(ii)(A-A') is a skew symmetric matrix:
Given
$A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} $
$A' = \begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix} $
A-A'=A+(-1)(A')
$A-A'=\begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}+(-)\begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix}$
$\;\;\;=\begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}+\begin{bmatrix} -1 & -6 \\ -5 & -7 \end{bmatrix}$
$\;\;\;=\begin{bmatrix} 1-1 & 5-6 \\ 6-5 & 7-7 \end{bmatrix}$
$\;\;\;=\begin{bmatrix} 0 & -1 \\ 1 & 0\end{bmatrix}$
Here $a_{21}=1\Rightarrow a_{12}=-1.$
$\Rightarrow a_{21}=-a_{12}$
$a_{11}=a_{22}=0.$
The diagonal elements of the above obtained matrix is equal to zero hence its a skew symmetric matrix
A-A' is a skew symmetric matrix.
answered Mar 14, 2013 by sharmaaparna1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...