logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

Evaluate the determinants: $ \begin{vmatrix} 0&1&2 \\ -1&0&3 \\-2&3&0 \end{vmatrix}$

$\begin{array}{1 1} 12 \\ -12 \\ 0 \\ \text{none of the above }\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • To evaluate a matrix of order $3\times 3$
  • $\mid A\mid=\begin{vmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33}\end{vmatrix}$
  • Therefore $\mid A\mid=a_{11}(a_{22}\times a_{33}-a_{23}\times a_{32})-a_{12}(a_{21}\times a_{32}-a_{23}\times a_{31})+a_{13}(a_{21}\times a_{32}-a_{22}\times a_{31})$
Given:(iii) $Evaluate:\begin{vmatrix}0 & 1 & 2\\-1& 0 &-3\\-2 & 3 & 0\end{vmatrix}$
 
We know to evaluate the value of the determinant of order $3\times 3$
 
Therefore $\mid A\mid=a_{11}(a_{22}\times a_{33}-a_{23}\times a_{32})-a_{12}(a_{21}\times a_{32}-a_{23}\times a_{31})+a_{13}(a_{21}\times a_{32}- a_{22}\times a_{31})$
 
$Hence \mid A\mid=0[(0\times 0-(-3\times 3)]-1[(-1\times 0)-(-3\times -2]+2[(-1\times 3)-(0\times -2)]$
 
$\qquad=0-1(6)+2(-3)$
 
$\qquad=-6-6$
 
$\qquad=-12$
answered Mar 6, 2013 by sreemathi.v
edited Apr 30, 2014 by vijayalakshmi.r
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...