Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

For all real values of \(x\), the minimum value of \( \large\frac{1-x+x^2}{1+x+x^2}\) is

\[(A)\; 0 \quad (B)\; 1 \quad (C)\; 3 \quad (D)\; \frac{1}{3}\]

Can you answer this question?

1 Answer

0 votes
  • $\large\frac{d}{dx}$$(x^n)=nx^{n-1}$
Step 1:
Let $y=\large\frac{1-x+x^2}{1+x+x^2}$
Numerator of $\large\frac{dy}{dx}=$$(-1+2x)(1+x+x^2)-(1+2x)(1-x+x^2)$
$\Rightarrow (-1-x-x^2)+(2x+2x^2+2x^3)-(1-x+x^2)-(2x-2x^2+2x^3)$
$\Rightarrow -2+2x^2=2(x^2-1)$
$\Rightarrow 2(x-1)(x+1)$
Step 2:
$\large\frac{dy}{dx}$$=0$ at $x=1,-1$
At $x=1$
$\large\frac{dy}{dx}$ changes sign from -ve to +ve.
$\therefore y$ is minimum at $x=1$
Minimum value of $\large\frac{1-x+x^2}{1+x+x^2}=\frac{1-1+1}{1+1+1}=\frac{1}{3}$
Part (D) is the correct answer.
answered Aug 9, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App