Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

The maximum value of \( [ x(x-1) +1]^{\frac{1}{3}}, 0 \leq \: x \leq\) is

\[ (A)\; \left(\frac{1}{3}\right)^{\frac{1}{3}} \quad (B)\; \frac{1}{2} \quad (C)\; 1 \quad (D)\; 0 \]

Can you answer this question?

1 Answer

0 votes
  • $\large\frac{d}{dx}$$(x^n)=nx^{n-1}$
Step 1:
Let $y=[x(x-1)+1]^{\Large\frac{1}{3}}$
Differentiating with respect to x we get
$\large\frac{dy}{dx}=\frac{1}{3}$$[x(x-1)+1]^{\Large\frac{-2}{3}}\times 2x-1$
$\large\frac{dy}{dx}$$=0$ at $x=\large\frac{1}{2}$
Step 2:
$\large\frac{dy}{dx}$ changes sign from -ve to +ve at $x=\large\frac{1}{2}$
$y$ is minimum at $x=\large\frac{1}{2}$
Value of $y$ at $x=0,(0+1)^{\Large\frac{1}{3}}$
$\Rightarrow 1^{\Large\frac{1}{3}}$$=1$
Value of $y$ at $x=1$,
The maximum value of $y$ is 1
Part (C) is the correct answer.
answered Aug 9, 2013 by sreemathi.v
edited Aug 19, 2013 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App