Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
Can you answer this question?

1 Answer

0 votes
  • A relation R in a set A is an equivalence relation if R is reflexive, symmetric and transitive.
  • A relation R in a set A is called reflexive. if $(a,a) \in R\;for\; all\; a\in A$
  • A relation R in a set A is called symmetric. if $(a_1,a_2) \in R\;\Rightarrow \; (a_2,a_1)\in R \;$ for $\;a_1,a_2 \in A$
  • A relation R in a set A is called transitive. if $(a_1,a_2) \in\; R$ and $(a_2,a_3)\in R \Rightarrow \;(a_1,a_3)\in R\; $for all $\; a_1,a_2,a_3 \in A$
Given the set $A=\{1,2,,3,4,5\}$ and the relation $R=\{(a,b):|a-b| \;is\; even\}$:
Let $a=b$, $(a,a) \in R \rightarrow |a-a|=0$ which is even. Therefore $R$ is reflexive.
For $R$ to be symmetric, if $(a,b) \in R \rightarrow (b,a) \in R$.
$(a,b) \in R \rightarrow |a-b|=even$
$(b,a) \in R \rightarrow |b-a|=even$
$(a-b)=-(b-a); $ therefore $|(a-b)|=|(b-a)|$
Therefore $(b,a)\in R$. Hence, $R$ is symmetric
Let $(a,b) \in R \; and \;(b,c)\in R$
$\Rightarrow |a-b|\; is\; even$ and $|b-c|\;is \;even$
If $(a,c) \in R \rightarrow |a-c| = even$
Now, $a-c=a-b+b-c$, which is an even number, as the sum of even numbers is even.
Hence $R$ is transitive.
answered Mar 8, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App