Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

Can you answer this question?

1 Answer

0 votes
  • If $f$ is a real function on a subset of the real numbers and $c$ be a point in the domain of $f$, then $f$ is continuous at $c$ if $\lim\limits_{\large x\to c} f(x) = f(c)$.
Step 1:
Let us first discuss the continuity of cosine.
$f(x)=\cos x$
At $x=c\in R$
$\lim\limits_{\large x\to c}\cos x=\cos c=f(c)$
$f$ is continuous for all values of $x\in R$
Step 2:
Let us discuss the continuity of cosecant.
$f(x)=cosec \;x$
$f$ is not defined at $x=n\pi$
$\Rightarrow f$ is not continuous at $x=n\pi$
Step 3:
Next let us discuss the continuity of secant.
Let $f(x)=\sec x$
$\sec x$ is undefined at $x=\large\frac{(2n+1)\pi}{2}$$\;\;n\in z$
Also at $x=\large\frac{\pi}{2}$
LHL=$\lim\limits_{\large x\to \Large\frac{\pi}{2}}\sec x$
$\quad=\lim\limits_{\large h\to 0}\sec(\large\frac{\pi}{2}$$-h)$
$\quad=\lim\limits_{\large h\to 0}cosec \;h$
RHL=$\lim\limits_{\large x\to \Large\frac{\pi}{2}}\sec x$
$\quad=\lim\limits_{\large h\to 0}\sec(\large\frac{\pi}{2}$$+h)$
$\quad=-\lim\limits_{\large h\to 0}cosec \;h$
RHL $\neq$ LHL
$f$ is not continuous at $x=\large\frac{\pi}{2}$ or at $x=\large\frac{(2n+1)\pi}{2}$
At $x=c\neq \large\frac{(2n+1)\pi}{2}$
$\lim\limits_{\large x\to c}\sec x=\sec c=f(c)$
Hence $f$ is continuous at $x\in R$ except at $x=\large\frac{(2n+1)\pi}{2}$ where $n\in z$
Step 4:
Finally we discuss the continuity of cotangent .
$f(x)=\cot x$
$f$ is not defined at $x=n\pi$
At $x=\pi$
LHL=$\lim\limits_{\large x\to \pi}\cot x$
$\quad\;\;\;=\lim\limits_{\large h\to 0}\cot (\pi-h)$
$\quad\;\;\;=\lim\limits_{\large h\to 0}(-\cot h)$
RHL=$\lim\limits_{\large x\to \pi}\cot x$
$\quad\;\;\;=\lim\limits_{\large h\to 0}\cot (\pi+h)$
$\quad\;\;\;=\lim\limits_{\large h\to 0}(\cot h)$
Thus this $f(x)$ does not exist at $x=n\pi$
At $x=c\neq n\pi$
$\lim\limits_{\large x\to c}\cot x=\cot c=f(c)$
$f$ is continuous at all points $x\in R$ except $x=n\pi$ where $n\in z$
answered May 29, 2013 by sreemathi.v
edited May 29, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App