Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Prove that the matrices $\bigl(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \bigr) $, $\bigl(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \bigr) $ form a group under matrix multiplication

Can you answer this question?

1 Answer

0 votes
  • A non-empty set G, together with an operation $*$ i.e., $(G, *)$ is said to be a group if it satisfies the following axioms
  • (1) Closure axiom : $a,b\in G\Rightarrow a*b\in G$
  • (2) Associative axiom : $\forall a, b, c \in G, (a * b) * c = a * (b * c)$
  • (3) Identity axiom : There exists an element $e \in G$ such that $a * e = e * a = a, \forall a ∈ G.$
  • (4) Inverse axiom : $\forall a \in G$ there exists an element $a^{−1}\in G$ such that $a^{−1}*a=a*a^{−1}=e.$
  • e is called the identity element of $G$ and $a^{−1}$ is called the inverse of a in $G.$
Step 1:
Let $S=\{I,A\}$
Where $I=\bigl(\begin{smallmatrix}1 &0\\0 &1\end{smallmatrix} \bigr)$ and $I=\bigl(\begin{smallmatrix}0 &1\\1 &0\end{smallmatrix} \bigr)$
Under matrix multiplication $IoA=AoI=A$ and $IoI=I$
$I=\bigl(\begin{smallmatrix}1 &0\\0 &1\end{smallmatrix} \bigr)$ is the identity matrix.
Now consider $AoA=\bigl(\begin{smallmatrix}0 &1\\1 &0\end{smallmatrix} \bigr)\bigl(\begin{smallmatrix}0 &1\\1 &0\end{smallmatrix} \bigr)$
$\qquad\qquad\qquad\quad=\bigl(\begin{smallmatrix}0+1 &0+0\\0+0 &1+0\end{smallmatrix} \bigr)$
$\qquad\qquad\qquad\quad=\bigl(\begin{smallmatrix}1 &0\\0 &1\end{smallmatrix} \bigr)$
Step 2:
Drawing up cayley's Table,we have
Step 3:
From the table ,it is evident that $S$ is closed under matrix multiplication.
Step 4:
Associativity :
Matrix multiplication is associative.
Step 5:
Existence of identity :
$I$ is the identity element and $I\in S$
Step 6:
Existense of inverse :
It is evident that $I^{-1}=I$ and $A^{-1}=A$.
$\therefore$ every element has an inverse in $S$
The four group axioms being satisfied,$(S,o)$ is a group where $o$ is the operation of matrix multiplication.
answered Sep 13, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App