Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Show that the set of all matrices of the form $\bigl(\begin{smallmatrix} a & 0 \\ 0 & 0 \end{smallmatrix} \bigr) $, $a \in R$ − {0} forms an abelian group under matrix multiplication.

Can you answer this question?

1 Answer

0 votes
  • A non-empty set G, together with an operation $*$ i.e., $(G, *)$ is said to be a group if it satisfies the following axioms
  • (1) Closure axiom : $a,b\in G\Rightarrow a*b\in G$
  • (2) Associative axiom : $\forall a, b, c \in G, (a * b) * c = a * (b * c)$
  • (3) Identity axiom : There exists an element $e \in G$ such that $a * e = e * a = a, \forall a^ {-1} G.$
  • (4) Inverse axiom : $\forall a \in G$ there exists an element $a^{-1}\in G$ such that $a^{-1}*a=a*a^{-1}=e.$
  • e is called the identity element of $G$ and $a^{?1}$ is called the inverse of a in $G.$
Step 1:
Let $G=\{\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr),a\in R-\{0\}\}$
To show $(G,o)$ is an abelian group where $'o'$ stands for matrix multiplication.
Step 2:
Closure :
Consider $\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr),\bigl(\begin{smallmatrix}b &0\\0&0\end{smallmatrix} \bigr)\in G$
$\therefore a,b\neq 0$
$\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)o\bigl(\begin{smallmatrix}b &0\\0&0\end{smallmatrix} \bigr)=\bigl(\begin{smallmatrix}ab &0\\0&0\end{smallmatrix} \bigr)\in G$
Since $a\neq 0,b\neq 0\Rightarrow ab\neq 0$
Closure is satisfied.
Step 3:
Associativity :
Matrix multiplication is associative.
Step 4:
Existence of identity :
Consider $\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr),\bigl(\begin{smallmatrix}e &0\\0&0\end{smallmatrix} \bigr)(a\neq 0)$
Such that $\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)o\bigl(\begin{smallmatrix}e &0\\0&0\end{smallmatrix} \bigr)=\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)$
$\Rightarrow \bigl(\begin{smallmatrix}ae &0\\0&0\end{smallmatrix} \bigr)=\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)$
$\Rightarrow \bigl(\begin{smallmatrix}e &0\\0&0\end{smallmatrix} \bigr)=\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)$
$\Rightarrow \bigl(\begin{smallmatrix}e &0\\0&0\end{smallmatrix} \bigr)=\bigl(\begin{smallmatrix}1 &0\\0&0\end{smallmatrix} \bigr)$
It can be seen that $\bigl(\begin{smallmatrix}1 &0\\0&0\end{smallmatrix} \bigr)o\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)=\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)$
$\therefore \bigl(\begin{smallmatrix}1 &0\\0&0\end{smallmatrix} \bigr)\in G$ is the identity element.
Step 5:
Existence of inverse :
Let $\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)\in G(a\neq 0)$
Consider $\bigl(\begin{smallmatrix}a' &0\\0&0\end{smallmatrix} \bigr)$ such that
$\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)\bigl(\begin{smallmatrix}a' &0\\0&0\end{smallmatrix} \bigr)=\bigl(\begin{smallmatrix}1 &0\\0&0\end{smallmatrix} \bigr)$
$\Rightarrow \bigl(\begin{smallmatrix}aa' &0\\0&0\end{smallmatrix} \bigr)=\bigl(\begin{smallmatrix}1 &0\\0&0\end{smallmatrix} \bigr)$
$\Rightarrow aa'=1\Rightarrow a'=\large\frac{1}{a}$(which exists since $a\neq 0)$
Now $\large\frac{1}{a}\neq 0$
$\bigl(\begin{smallmatrix}\large\frac{1}{a} &0\\0&0\end{smallmatrix} \bigr)\in G$
$\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)o\bigl(\begin{smallmatrix}\large\frac{1}{a} &0\\0&0\end{smallmatrix} \bigr)=\bigl(\begin{smallmatrix}\large\frac{1}{a} &0\\0&0\end{smallmatrix} \bigr)o\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)=\bigl(\begin{smallmatrix}1 &0\\0&0\end{smallmatrix} \bigr)$
$\therefore$ the inverse of $\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)$ is $\bigl(\begin{smallmatrix}\large\frac{1}{a} &0\\0&0\end{smallmatrix} \bigr)$ in $G$
Thus every element in G has an inverse.
Step 6:
Let $\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr),\bigl(\begin{smallmatrix}b &0\\0&0\end{smallmatrix} \bigr)\in G$
Consider $\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)o\bigl(\begin{smallmatrix}b &0\\0&0\end{smallmatrix} \bigr)=\bigl(\begin{smallmatrix}ab &0\\0&0\end{smallmatrix} \bigr)=\bigl(\begin{smallmatrix}ba &0\\0&0\end{smallmatrix} \bigr)$
$\Rightarrow \bigl(\begin{smallmatrix}b &0\\0&0\end{smallmatrix} \bigr)o\bigl(\begin{smallmatrix}a &0\\0&0\end{smallmatrix} \bigr)$
Since multiplication of real numbers is commutative.
$\therefore$ commutativity is satisfied.
The four group axioms being satisfied and the commutative property being satisfied $(G,0)$ is an abelian group.
answered Sep 16, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App