This is the first part of multipart q4

Need homework help? Click here.

- If $S$ is a sample space with a probability measure and $X$ is a real valued function defined over the elements of $S$, then $X$ is called a random variable.
- Types of Random variables :
- (1) Discrete Random variable (2) Continuous Random variable
- Discrete Random Variable :If a random variable takes only a finite or a countable number of values, it is called a discrete random variable.
- Continuous Random Variable :A Random Variable X is said to be continuous if it can take all possible values between certain given limits. i.e., X is said to be continuous if its values cannot be put in 1 − 1 correspondence with N, the set of Natural numbers.
- The probability mass function (a discrete probability function) p(x) is a function that satisfies the following properties :
- (1) $P(X=x)=p(x)=p_x$
- (2) $P(x)\geq 0$ for all real $x$
- (3) $\sum p_i=1$

$\sum p(x_i)=1$

$\therefore a+3a+5a+7a+9a+11a+13a+15a+17a=1$

$81a=1$

$a=\large\frac{1}{81}$

Ask Question

Tag:MathPhyChemBioOther

Take Test

...