Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Let $S=\{a,b,c\}\;$ and$ \;T = \{1,2,3\}$. Find $F^{-1}$ of the following functions \(F\) from \(S\) to \(T\), if it exists - - $(ii)\;\; F=\{(a,2), (b,1), (c,1)\}$

Note: This is part 2 of a 2 part question, split as 2 separate questions here.

Can you answer this question?

1 Answer

0 votes
  • A function $g:T \to S$ if one-ne and onto is the inverse of $f:S \to T$ for every element.
  • For finite sets, if $(a,b) \in f \rightarrow (b,a) \in f^{-1}$
Given $T=\{1,2,3\}, \;S=\{a,b,c\}$ and $F$ defined by $ F:S \to T$ is $ F=\{(a,2)(b,1),(c,1)\}$
$\Rightarrow F(b)=F(c)=1 \rightarrow F$ is not one-one.
Therefore $F$ is not invertible Therefore $F^{-1}$ does not exist
answered Mar 13, 2013 by sreemathi.v
edited Mar 20, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App