Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

Using properties of determinants,solve for x,\[\begin{vmatrix}a+x & a-x& a-x\\a-x & a+x & a-x\\a-x & a-x & a+x\end{vmatrix}=0\]

Can you answer this question?

1 Answer

0 votes
  • Elementary transformation can be done by
  • (i)$R_i \leftrightarrow R_j$ or $C_i\leftrightarrow C_j.$
  • (ii)$R_i\leftrightarrow kR_i$ or $C_i\leftrightarrow kC_i$
  • (iii)$R_i\rightarrow R_i+kR_j$ or $C_i\rightarrow C_i+kC_j$
  • The value of the determinant can be obtained by expanding it along any of its row(or column) and multiplying by its cofactors.
Let $\Delta=\begin{vmatrix}a+x & a-x & a-x\\a-x & a+x &a-x\\a-x & a-x & a+x\end{vmatrix}$
Apply $C_1\rightarrow C_1+C_2+C_3$,we get
$\Delta=\begin{vmatrix}3a-x & a-x & a-x\\3a-x & a+x &a-x\\3a-x & a-x & a+x\end{vmatrix}$
Now take (3a-x) as the common factor from $C_1$
$\Delta=(3a-x)\begin{vmatrix}1 & a-x & a-x\\1 & a+x &a-x\\1 & a-x & a+x\end{vmatrix}$
Apply $R_1\rightarrow R_1-R_2$ and $R_2\rightarrow R_2-R_3$
$\Delta=(3a-x)\begin{vmatrix}0 & -2x & 0\\0 & 2x &-2x\\1 & a-x & a+x\end{vmatrix}$
Now expanding along $R_1$,we get
$\Delta=(3a-x)\begin{vmatrix}2x & 0\\2x &-2x\end{vmatrix}=(3a-x)(4x^2-0)=4x^2(3a-x)$
Now it is given $\Delta=0.$
$4x^2(3a-x)=0\Rightarrow x=0$ or x=3a.
Hence the value of x are 0 or 3a.


answered Mar 13, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App