logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

Using matrices,solve the system of linear equations,\[2x-y+z=3\]\[-x+2y-z=-4\]\[x-y+2z=1\]

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If |A|$\neq $ 0,then it is a non-singular matrix.
  • Hence it is invertible.
  • $A^{-1}=\frac{1}{|A|}.adj\; A$
  • X=$A^{-1}B.$
Given:
 
2x-y+z=3
 
-x+2y-z=-4
 
x-y+2z=1
The given system of equation is of the form
 
AX=B.
 
(i.e)$\begin{bmatrix}2 & -1 & 1\\-1 & 2 & -1\\1 & -1 & 2\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}3\\-4\\1\end{bmatrix}$
 
Therefore x=$A^{-1}B.$
 
To find $A^{-1}$,let us first see if [A] is singular or non-singular.
 
|A| can be determined by expanding along $R_1$
 
|A|=$2(2\times 2-(-1)\times(- 1))-(-1)(-1\times 2-1\times -1)+1(-1\times -1-2\times 1)$
 
$\;\;=2(4-1)+1(-2+1)+1(1-2)$
 
$\;\;=6-1-1=4\neq 0$
 
Since $|A| \neq 0$ [A] is non-singular.
 
Now let us find the adj A.
 
To find adj A,let us find the minors and cofactors of the elements of [A].
$M_{11}=\begin{vmatrix}2 & -1\\-1 & 2\end{vmatrix}$=4-1=3.
 
$M_{12}=\begin{vmatrix}-1 & -1\\1 & 2\end{vmatrix}$=-2+1=-1.
 
$M_{13}=\begin{vmatrix}-1 & 2\\1 & -1\end{vmatrix}$=1-2=-1.
 
$M_{21}=\begin{vmatrix}-1 & 1\\-1 & 2\end{vmatrix}$=-2+1=-1.
 
$M_{22}=\begin{vmatrix}2 & 1\\1 & 2\end{vmatrix}$=4-1=3.
 
$M_{23}=\begin{vmatrix}2 & -1\\1 & -1\end{vmatrix}$=-2+1=-1.
 
$M_{31}=\begin{vmatrix}-1 & 1\\2 & -1\end{vmatrix}$=1-2=-1.
 
$M_{32}=\begin{vmatrix}2 & 1\\-1 & -1\end{vmatrix}$=-2+1=-1.
 
$M_{33}=\begin{vmatrix}2 & -1\\-1 & 2\end{vmatrix}$=4-1=3.
 
$A_{11}=(-1)^{1+1}$.3=3.
 
$A_{12}=(-1)^{1+2}$.-1=1.
 
$A_{13}=(-1)^{1+3}$.-1=-1.
 
$A_{21}=(-1)^{2+1}$.-1=1.
 
$A_{22}=(-1)^{2+2}$.3=3.
 
$A_{23}=(-1)^{2+3}$.-1=1.
 
$A_{31}=(-1)^{3+1}$.-1=-1.
 
$A_{32}=(-1)^{3+2}$.-1=1.
 
$A_{33}=(-1)^{3+3}$.3=3.
 
Now adj A=$\begin{bmatrix}A_{11} & A_{21} & A_{31}\\A_{12} & A_{22} & A_{32}\\A_{13} & A_{23} & A_{33}\end{bmatrix}$
 
$\qquad\qquad=\begin{bmatrix}3 & 1 & -1\\1 & 3 & 1\\-1 & 1 & 3\end{bmatrix}$
 
$A^{-1}=\frac{1}{|A|}Adj \;A$,where |A|=4.
 
$A^{-1}=\frac{1}{4}\begin{bmatrix}3 & 1 & -1\\1 & 3 & 1\\-1 & 1 & 3\end{bmatrix}$
 
X=$A^{-1}B$,substituting for x,$A^{-1}$ and B,
 
$\begin{bmatrix}x\\y \\z\end{bmatrix}=1/4\begin{bmatrix}3 & 1 & -1\\1 & 3 & 1\\-1 & 1 & 3\end{bmatrix}\begin{bmatrix}3\\-4\\1\end{bmatrix}$
 
Matrix multiplication can be done by multiplying rows of matrix A by column of matrix B.
 
$\begin{bmatrix}x\\y\\z\end{bmatrix}=1/4\begin{bmatrix}9-4-1\\3-12+1\\-3-4+3\end{bmatrix}=1/4\begin{bmatrix}4\\-8\\-4\end{bmatrix}$
 
$\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}4/4\\-8/4\\-4/4\end{bmatrix}=\begin{bmatrix}1\\-2\\-1\end{bmatrix}$
 
Hence x=1,y=-2,z=-1.

 

answered Mar 14, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...