Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Show that the function given by \( f(x) =\large \frac{\log \: x}{x}\) has maximum at \(x = e.\)

Can you answer this question?

1 Answer

0 votes
  • $\big(\large\frac{u}{v}\big)'=\frac{u'v-uv'}{v^2}$
  • Maxima & Minima $f'(x)=0$
Step 1:
$f(x)=\large\frac{\log x}{x}$
Differentiating with respect to x we get
$f'(x)=\large\frac{\Large\frac{1}{x}.x-\log x.1}{x^2}$
$\qquad=\large\frac{1-\log x}{x^2}$
For maxima and minima $f'(x)=0$
$\large\frac{1-\log x}{x^2}$$=0$
$1-\log x=0$
$\log x=1$
Step 2:
On double differentiation of f(x) we get
$f''(x)=\large\frac{d}{dx}\big(\frac{1-\log x}{x^2}\big)$
$\qquad\;=\large\frac{\Large\frac{1}{x}\times x^2-(1-\log x).2x}{x^4}$
$\qquad\;=\large\frac{-x[1+2(1-\log x)]}{x^4}$
$\qquad\;=\large\frac{-(1+2-2\log x)}{x^3}$
$\qquad\;=\large\frac{-(3-2\log x)}{x^3}$
Step 3:
$f''(c)=\large\frac{-(3-2\log_e e)}{e^3}$
$\therefore f$ is maximum at $x=e$
answered Aug 9, 2013 by sreemathi.v
edited Sep 2, 2013 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App