Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

The two equal sides of an isosceles triangle with fixed base \(b\) are decreasing at the rate of 3 cm per second. How fast is the area decreasing when the two equal sides are equal to the base ?

$\begin{array}{1 1} \sqrt {3b}cm^2/sec \\ \sqrt {-3b}cm^2/sec \\ \sqrt {3a}cm^2/sec \\ \sqrt {5b}cm^2/sec \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Area of triangle $=\large\frac{1}{2}$$\times l\times h$
  • $\large\frac{d}{dx}$$(x^n)=nx^{n-1}$
Step 1:
Let $x$ be the equal side of isosceles triangle with fixed base $b$
In right $\Delta ABL$,
Area of $\Delta ABC=A=\large\frac{1}{2}$$\times BC\times AL$
$A=\large\frac{1}{2}$$\times b\times \sqrt{x^2-\large\frac{b^2}{4}}$
Step 2:
It is given that $\large\frac{dx}{dt}$$=3cm/sec$
Now $\large\frac{dA}{dt}=\large\frac{b}{2}\times\frac{1}{2}\times \frac{1}{\sqrt{x^2-b^2/4}}\times 2x\times \large\frac{dx}{dt}$
$\Rightarrow \large\frac{dA}{dt}=\frac{bx}{2}\times \frac{2}{\sqrt{4x^2-b^2}}\times \large\frac{dx}{dt}$
$\large\frac{dA}{dt}=\frac{bx}{2}\times\frac{2}{\sqrt{4x^2-b^2}}\times \frac{dx}{dt}$
Step 3:
When $x=b$ we get,
$\large\frac{dA}{dt}=\frac{b\times b\times 2\times 3}{2\sqrt{4b^2-b^2}}$
Hence the area is decreasing at $\sqrt {3b}cm^2/sec$
answered Aug 9, 2013 by sreemathi.v
edited Sep 2, 2013 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App