Email
Chat with tutor
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XII  >>  Math  >>  Determinants
Answer
Comment
Share
Q)

Using the properties of determinants,\[\begin{vmatrix}a^2+2a &2a+1 & 1\\2a+1 & a+2 & 1\\3 & 3 & 1\end{vmatrix}=(a-1)^3\]

1 Answer

Comment
A)
Toolbox:
  • If each element of a row (or a column)of a determinant is multiplied by a constant k,then |A|=k|A|.
  • If A is a square matrix such that each element of a row (or a column) of A is expressed as a sum of two or more terms,then the determinant of A can be expressed as the sum of the determinants of two or more matrices of the same order.
Let $\Delta=\begin{vmatrix}a^2+2a & 2a+1 & 1\\2a+1 & a+2 & 1\\3 & 3& 1\end{vmatrix}$
 
Apply $R_1\rightarrow R_1-R_2 and R_2\rightarrow R_2-R_3$
 
$\Delta=\begin{vmatrix}a^2-1 & a-1 & 0\\2a-2 & a-1 & 0\\3 & 3& 1\end{vmatrix}=\begin{vmatrix}a^2-1 & a-1 & 0\\2(a-1)& a-1 & 0\\3& 3 & 1\end{vmatrix}$
 
We know ($a^2-1)=(a+1)(a-1)$
 
Take (a-1) as a common factor from $R_1 $ and $R_2$
 
Therefore $\Delta=(a-1)^2\begin{vmatrix}a+1 & 1 & 0\\2 & 1 & 0\\3 & 3& 1\end{vmatrix}$
 
Expand along $R_1$
 
$\quad=(a-1)^2[(a+1)(1)-1(2)+0]$
 
$\quad=(a-1)^2[a+1-2]$
 
$\Delta=(a-1)^3$
 
Hence proved.

 

Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.
...