Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Find the absolute maximum and minimum values of the function \(f\) given by $ f (x) = cos^2 x + sin\: x, x\: \in [0, \pi]$

Can you answer this question?

1 Answer

0 votes
  • $\large\frac{d}{dx}$$(\cos x)=-\sin x$
  • $\large\frac{d}{dx}$$(\sin x)=\cos x$
  • Maxima & minima$\Rightarrow f'(x)=0$
Step 1:
Let $f(x)=\cos^2x+\sin x\;\;x\in [0,\pi]$
Differentiating with respect to $x$
$f'(x)=2\cos x(-\sin x)+\cos x$
$\qquad=\cos x(-2\sin x+1)$
For maxima or minimum $f'(x)=0$
Therefore $\cos x(-2\sin x+1)=0$
$\cos x=0$ (or) $-2\sin x+1=0$
$-2\sin x=-1$
$\sin x=\large\frac{1}{2}$
Step 2:
Now $f(0)=\cos^20+\sin 0$
$\quad\;\;=\big(\large\frac{\sqrt 3}{2}\big)^2+\large\frac{1}{2}$
$\quad\;\;=\large\frac{ 3}{4}+\large\frac{1}{2}$
$\quad\;\;=\large\frac{ 3+2}{4}=\large\frac{5}{4}$
$f(\pi)$$=\cos \pi$$+\sin\pi=1+0=1$
Of all these values,the maximum and minimum values of $f(x)$ are $\large\frac{5}{4}$ and 1 respectively.
So absolute maximum=$\large\frac{5}{4}$
Absolute minimum =1
answered Aug 12, 2013 by sreemathi.v
edited Sep 2, 2013 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App