Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

If $\begin{vmatrix}4+x& 4-x & 4-x\\4-x & 4+x & 4-x\\4-x & 4-x & 4+x\end{vmatrix}$,then find the values of x.

Can you answer this question?

1 Answer

0 votes
  • If A is a square matrix such that each element of a row (or a column) of A is expressed as the sum of two or more terms,then the determinant can also be expressed as the sum of the determinants of two or more matrices.
  • If each element of a row (or a column) of a determinant is multiplied by k,then |A|=k|A|.
Let $\Delta=\begin{vmatrix}4+x & 4-x & 4-x\\4-x & 4+x & 4-x\\4-x & 4-x & 4+x\end{vmatrix}$
Apply $C_1\rightarrow C_1+C_2+C_3$
$\Delta=\begin{vmatrix}12-x & 4-x & 4-x\\12-x & 4+x & 4-x\\12-x & 4-x & 4+x\end{vmatrix}$
Let us take (12-x) as the common factor from $C_1$
$\Delta=(12-x)\begin{vmatrix}1 & 4-x & 4-x\\1 & 4+x & 4-x\\1& 4-x & 4+x\end{vmatrix}$
Apply $R_1\rightarrow R_1-R_2$ and $R_2\rightarrow R_2-R_3$
$\Delta=(12-x)\begin{vmatrix}0 & -2x & 0\\0 & 2x & 2x\\1& 4-x & 4+x\end{vmatrix}$
Now expanding along $R_1$ we get,
It is given $|\Delta|=0.$
Therefore $(12-x)(8x^2)=0.$
$\Rightarrow (12-x)=0$ or $(8x^2)=0.$
$\Rightarrow x=12$ or x=0.
Hence the values of x are 0,12.
answered Mar 18, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App