Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius \(r\) is \( \large\frac{4r}{3}\)

Can you answer this question?

1 Answer

0 votes
  • Area of a cone$=\large\frac{1}{3}$$\pi r^2h$
  • $\large\frac{d}{dx}$$\big(\sin \theta)=\cos\theta$
  • $\large\frac{d}{dx}$$\big(\cos \theta)=-\sin\theta$
Step 1:
The radius of sphere is $r$ in which a cone is inscribed .Let $O$ be the centre of the sphere.BC is the diameter of the base of cone.
Let $AM$=Altitude
$\angle BOM=\theta$
Radius of the cone $R=r\sin\theta$
Altitude of the cone ABC=$AM=AO+OM$
$\Rightarrow r+r\cos\theta=r(1+\cos\theta)$
We have Area of a cone$=\large\frac{1}{3}$$\pi r^2h$
By substituting the value of h we get
$\Rightarrow \large\frac{1}{3}$$\pi r^2h=\large\frac{1}{3}$$\pi r^2\sin^2\theta\times r(1+\cos\theta)$
$\Rightarrow \large\frac{1}{3}$$\pi r^2h=\large\frac{1}{3}$$\pi r^3\sin^2\theta\times (1+\cos\theta)$
Step 2:
Differentiating with respect to $\theta$
$\large\frac{dV}{d\theta}=\frac{1}{3}$$\pi r^3[2\sin\theta\cos\theta(1+\cos\theta)+\sin^2\theta(-\sin\theta)]$
$\quad\quad=\large\frac{1}{3}$$\pi r^3\sin\theta(2\cos\theta+2\cos^2\theta-\sin^2\theta)$
$\quad\quad=\large\frac{1}{3}$$\pi r^3\sin\theta(2\cos\theta+2\cos^2\theta-1+\cos^2\theta)$
$\quad\quad=\large\frac{1}{3}$$\pi r^3\sin\theta(3\cos^2\theta+2\cos\theta-1)$
$\quad\quad=\large\frac{1}{3}$$\pi r^3\sin\theta(\cos\theta+1)(3\cos\theta-1)$
Step 3:
$\large\frac{dV}{d\theta}$$=0$ at $\cos\theta=\large\frac{1}{3}$
$\cos\theta\neq -1$
Since $\theta\neq \pi$
$\large\frac{dV}{d\theta}$ changes sign from +ve to -ve.
$V$ is maximum at $\cos\theta=\large\frac{1}{3}$
Altitude $=r(1+\cos\theta)=r(1+\large\frac{1}{3})$
$\Rightarrow \large\frac{4r}{3}$
answered Aug 12, 2013 by sreemathi.v
edited Sep 2, 2013 by sharmaaparna1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App