Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
0 votes

Let \(f\) be a function defined on \([a, b]\) such that \(f' (x) > 0\), for all \(x \: \in (a, b)\). Then prove that \(f\) is an increasing function on \((a, b).\)

Can you answer this question?

1 Answer

0 votes
  • $f'(c)=\large\frac{f(x_2)-f(x_1)}{x_2-x_1}$
Step 1:
Let $x_1,x_2\in(a,b)$ such that $x_1 < x_2$
Consider the sub-interval $[x_1,x_2]$
Since $f(x)$ is differentiate on $(a,b)$ and $[x_1,x_2]\in (a,b)$
Therefore $f(x)$ is continuous on $[x_1,x_2]$ and differentiable on $(x_1,x_2)$
By the Lagrange's mean value theorem ,there exists $c\in (x_1,x_2)$
Such that $f'(c)=\large\frac{f(x_2)-f(x_1)}{x_2-x_1}$
Step 2:
Since $f'(x) >0$ for all $x\in (a,b)$.
So in particular $f'(c)>0$
Now $f'(c) >0$
$\Rightarrow \large\frac{f(x_2)-f(x_1)}{x_2-x_1} $$>0$
$\Rightarrow f(x_2)-f(x_1)>0$
$x_2-x_1>0$ when $x_1 < x_2$
$f(x_1) < f(x_2)$ if $x_1$ < $x_2$
Since $x_1,x_2$ are arbitrary points in $(a,b)$
$\therefore x_1 < x_2$
$\Rightarrow f(x_1) < f(x_2)$ for all $x_1,x_2 \in (a,b)$
Hence $f(x)$ is increasing on $(a,b)$
answered Aug 12, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App