Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
+1 vote

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height \(h\) and semi vertical angle $\alpha$ is one-third that of the cone and the greatest volume of cylinder is $\large \frac{4}{27}$$\pi h^3 \: tan^2 \: \alpha $

Can you answer this question?

1 Answer

0 votes
  • $\large\frac{d}{dx}$$(x^n)=nx^{n-1}$
Step 1:
Let $VAB$ be the cone of height h,semi vertical angle $\alpha$ and let $x$ be the radius of the base of the cylinder $A'B'DC$ which is inscribed in the cone $VAB$.Then
$OO'$ height of the cylinder$=VO-VO'$
$\qquad\qquad\qquad\qquad\quad=(h-x\cot \alpha)\pi x^2$
Differentiating with respect to $x$
$\large\frac{dV}{dx}$$=2\pi xh-3\pi x^2\cot \alpha$
For maxima or minima $V,\large\frac{dV}{dx}$$=0$
$2\pi xh-3\pi x^2\cot \alpha=0$
$2\pi xh=3\pi x^2\cot \alpha$
$x=\large\frac{3\pi x^2\cot \alpha}{2\pi h}$
$2hx=3\pi x^2\cot \alpha$
$2h=3\pi x\cot\alpha$
$\large\frac{2h}{3\pi \cot \alpha}$$=x$
Step 2:
Now $\large\frac{d^2V}{dx^2}$$=2\pi h-6\pi x\cot\alpha$
When $x=\large\frac{2h}{3}$$\tan\alpha$ we have
$\large\frac{d^2V}{dx^2}=$$\pi(2h-4h)=-2\pi h <0$
$\Rightarrow V$ is maximum when $x=\large\frac{2h}{3}$$\tan\alpha$
$OO'=h-x\cot \alpha$
Step 3:
The maximum volume of the cylinder is $V=\pi\big(\large\frac{2h}{3}$$\tan\alpha\big)^2(h-\large\frac{2h}{3})$
$V=\large\frac{4}{27}$$\pi h^3\tan^2\alpha$
answered Aug 13, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App