Ask Questions, Get Answers

Home  >>  CBSE XII  >>  Math  >>  Relations and Functions

Find which of the operations given below has identity:$(vi)\;\; a \ast b = ab^2$

This question has multiple parts. Therefore each part has been answered as a separate question on Clay6.com

1 Answer

  • An element $e \in N $ is an identify element for operation * if $a \ast e=e \ast a$ for all $a \in N$
Given $a \ast b = ab^2$
let us define e as the identity element of the operation *
By definition of identity element a*e =e*a = a
But from definition of * operation $a \ast e = ae^2$ =>$ a=ae^2$, and which imples that $e^2 =1$
Also ,$e \ast a = ea^2$ =>$ a=e a^2$ implies that e=1/a
from the above , we get two values for e
This is not possible as the identity is unique. Therefore *operation defined by $a \ast b = ab^2$ has no identity.
answered Mar 20, 2013 by thagee.vedartham

Related questions