logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Relations and Functions
0 votes

Define a binary operation \(\ast\) on the set \(\{0, 1, 2, 3, 4, 5\}\) as \[ a \ast b = \left\{ \begin{array} {1 1} a+b, & \quad \text{ if a$+$b $<$ 6} \\ a+b-6, & \quad \text{ if a+b $\geq$ 6} \\ \end{array} \right. \] Zero is the identity for this operation. True or False?

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • An element $e \in N $ is an identify element for operation * if $a*e=e*a$ for all $a \in N$
Given the set $X=\{0,1,2,3,4,5\}$ where the binary operation $\ast$ is defined by $a * b= \left\{ \begin{array}{1 1} a+b & \quad if\;a+b < 6\\ a+b-6 & \quad if a+b \geq 6 \end{array} \right. $
An element $e \in N $ is an identify element for operation * if $a*e=e*a$ for all $a \in N$
To check if zero is the identity, we see that $a*0=a+0=a \qquad for\;a \in x$ and also $0*a=0+a=a \qquad for \;a \in x$
Given $a \in X, \qquad a+0 < 6\;$ and also $\;0+a < 6$
$\Rightarrow 0$ is the identify element for the given given operation
answered Mar 20, 2013 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...