Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Evaluate: $\int\large \frac{cos 2x-cos 2\alpha}{cos x-cos\alpha}$$dx$

(Note: This question has been split into 2 questions) This question appeared in 65-1,65-2 and 65-3 versions of the paper in 2013.
Can you answer this question?

1 Answer

0 votes
  • $\cos 2x = cos^2x - 1$
Given $\int\large \frac{cos 2x-cos 2\alpha}{cos x-cos \alpha}$$dx$
We know that $\cos 2x = cos^2x - 1$
$\Rightarrow \int\large \frac{cos 2x-cos 2\alpha}{cos x-cos \alpha}\normalsize dx=\int\large\frac{(cos^2x-1)-(2cos^2\alpha-1)}{cos x-cos\alpha}$
$\Rightarrow \int\large \frac{cos 2x-cos 2\alpha}{cos x-cos \alpha}\normalsize dx=\int \large \frac{2(cos^2x-cos^2\alpha)}{cos x-cos\alpha}$dx.
$\Rightarrow \int\large \frac{cos 2x-cos 2\alpha}{cos x-cos \alpha}\normalsize dx$$=2\int (cos x+cos\alpha)$$dx =2\int cos x dx+2\int cos\alpha$$dx$..
$\Rightarrow \int\large \frac{cos 2x-cos 2\alpha}{cos x-cos \alpha}\normalsize dx$$=2sin x+2xcos\alpha$ +c.
answered Mar 21, 2013 by sreemathi.v
edited Mar 22, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App