Comment
Share
Q)

Suppose that the electric field amplitude of an electromagnetic wave is $E_0 = 120 N/C$ and its frequency is $\gamma = 50.0 \;MHz$ . Find the expression of $\overrightarrow{E}$ and $\overrightarrow{B}$

$\begin{array}{1 1} (i) E= (120 N/c) \sin [(1.05 rad/m)x-3.14 \times 10^8 rad/sec] \hat i, B = (4 \times 10^{-7} T) \sin [(1.05 rad /m)x - 3.14 \times 10^8 \;rad/sec] \hat j \\ (i) E= (120 N/c) \sin [(1.05 rad/m)x-3.14 \times 10^8 rad/sec] \hat j, B = (4 \times 10^{-7} T) \sin [(1.05 rad /m)x - 3.14 \times 10^8 \;rad/sec] \hat k \\ (i) E= (120 N/c) \sin [(1.05 rad/m)x-3.14 \times 10^8 rad/sec] \hat k, B = (120\;N/c) \sin [(1.05 rad /m)x - 3.14 \times 10^8 \;rad/sec] \hat i \\ (i) E= (120 N/c) \sin [(1.05 rad/m)x-3.14 \times 10^8 rad/sec] \hat j, B = (120 N/C) \sin [(1.05 rad /m)x - 3.14 \times 10^8 \;rad/sec] \hat j \end{array}$

Expression for $\overrightarrow{E}$ is $E =E_0 \sin (kx- wt)$
$\qquad= (120 N/C) \sin [(1.05 rad/m)x-3.14 \times 10^8\;rad/sec] \hat j$
Expression for $\overrightarrow{B}$ is $B=B_0 \sin (kx- wt)$
$\qquad= (4 \times 10^{-7}T) \sin [1.05 rad/m x -(3.14 \times 10^8 rad /sec] \hat k$
$(i) E= (120 N/c) \sin [(1.05 rad/m)x-3.14 \times 10^8 rad/sec] \hat j, B = (4 \times 10^{-7} T) \sin [(1.05 rad /m)x - 3.14 \times 10^8 \;rad/sec] \hat k$