Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Evaluate :$\int\limits_0^{2{\pi}}\large\frac{1}{1+e^{sin x}}$$dx$

This question appeared in the both 65-1 and 65-3 versions of the paper in 2013.
Can you answer this question?

1 Answer

0 votes
  • $\sin(2\pi-x)=\sin(-x)=-\sin x$
Given $I=\int \limits_0^{2\pi} \large\frac{1}{1+\large e^{\sin x}}$$dx \quad (1)$
$\textbf{Step 1}$
Applying the properties of integral
$\Rightarrow I=\int \limits_0^{2\pi} \large\frac{1}{1+ \large e^{\sin (2\pi-x)}}dx$
We know that $\sin(2\pi-x)=\sin(-x)=-\sin x$
$\Rightarrow I=\int \limits_0^{2\pi} \large\frac{dx}{1+e^{\sin x}}=\int \limits_0^{2\pi} \large\frac{e^{\sin x}}{1+e^{\sin x}}$$dx \quad (2)$
$\textbf{Step 2}$
Adding $(1)$ and $(2)$, i.e, $\int \limits_0^{2\pi} \large\frac{1}{1+\large e^{\sin x}}$$dx +\int \limits_0^{2\pi} \large\frac{e^{\sin x}}{1+e^{\sin x}}$$dx $
$\Rightarrow 2I=\int \limits_0^{2\pi} \large\frac{1+e^{\sin x}}{1+e^{\sin x}}dx$
$\Rightarrow 2I=\int \limits_0^{2\pi} dx$
$\Rightarrow 2I=\big[x\big]_0^{2\pi}$
$\Rightarrow 2I=2\pi-0 = 2\pi \rightarrow I=\pi$
answered Mar 22, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App