Email
Chat with tutor
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XII  >>  Math  >>  Model Papers
Answer
Comment
Share
Q)

Evaluate :$\int\limits_0^{2{\pi}}\large\frac{1}{1+e^{sin x}}$$dx$

This question appeared in the both 65-1 and 65-3 versions of the paper in 2013.

1 Answer

Comment
A)
Toolbox:
  • $\sin(2\pi-x)=\sin(-x)=-\sin x$
Given $I=\int \limits_0^{2\pi} \large\frac{1}{1+\large e^{\sin x}}$$dx \quad (1)$
$\textbf{Step 1}$
Applying the properties of integral
$\Rightarrow I=\int \limits_0^{2\pi} \large\frac{1}{1+ \large e^{\sin (2\pi-x)}}dx$
We know that $\sin(2\pi-x)=\sin(-x)=-\sin x$
$\Rightarrow I=\int \limits_0^{2\pi} \large\frac{dx}{1+e^{\sin x}}=\int \limits_0^{2\pi} \large\frac{e^{\sin x}}{1+e^{\sin x}}$$dx \quad (2)$
$\textbf{Step 2}$
Adding $(1)$ and $(2)$, i.e, $\int \limits_0^{2\pi} \large\frac{1}{1+\large e^{\sin x}}$$dx +\int \limits_0^{2\pi} \large\frac{e^{\sin x}}{1+e^{\sin x}}$$dx $
$\Rightarrow 2I=\int \limits_0^{2\pi} \large\frac{1+e^{\sin x}}{1+e^{\sin x}}dx$
$\Rightarrow 2I=\int \limits_0^{2\pi} dx$
$\Rightarrow 2I=\big[x\big]_0^{2\pi}$
$\Rightarrow 2I=2\pi-0 = 2\pi \rightarrow I=\pi$
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.
...