Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the vector equation of the plane through the points (2,1,-1) and (-1,3,4) and perpendicular to the plane x-2y+4z=10.

(Note: This question has been split into 2 questions)

This question appeared in 65-1,65-2 and 65-3 versions of the paper in 2013.

Can you answer this question?

1 Answer

–1 vote
$\textbf{Step 1}$:
The required plane passes through: $P(2,1,-1)$ and $Q(-1,3,4)$.
Then we can write the position vectors as follows: $a_1=2\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{k}$ and $a_2=-\overrightarrow{i}+3\overrightarrow{j}+4\overrightarrow{k}$
$\Rightarrow PQ=(a_2-a_1)=-3\overrightarrow{i}+2\overrightarrow{j}+5\overrightarrow{k}$
$\textbf{Step 2}$:
Let $\overrightarrow{i}$ be the normal vector to the desired plane $\overrightarrow{n}=\overrightarrow{n_i} \times \overrightarrow{PQ}$ =$\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\ 1 & -2 & 4 \\ -3 & 2 & 5 \end{vmatrix}$
$\Rightarrow \overrightarrow n=\overrightarrow{i}(-10-8)-\overrightarrow{j}(5+12)+\overrightarrow{k}(2-6) = -18\overrightarrow{i}-17 \overrightarrow{j}-4 \overrightarrow{k}$
$\textbf{Step 3}$:
$\Rightarrow \overrightarrow{r}.\overrightarrow{n} =\overrightarrow{a}.\overrightarrow{n}$
$ \Rightarrow \overrightarrow r.(-18\overrightarrow{i}-17\overrightarrow{j}-4\overrightarrow{k}) = (2\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{k})(-18\overrightarrow{i}-17\overrightarrow{j}-4\overrightarrow{k})$
$\Rightarrow$ $\overrightarrow{r}.(-18\overrightarrow{i}-17\overrightarrow{j}-4\overrightarrow{k})=-36-17+4$
$\Rightarrow$ $\overrightarrow{r}.(18\overrightarrow{i}-17\overrightarrow{j}+4\overrightarrow{k})=49$
answered Mar 21, 2013 by meena.p
edited Mar 22, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App