Email
Chat with tutor
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XII  >>  Math  >>  Model Papers
Answer
Comment
Share
Q)

Find the area of the greatest rectangle that can be inscribed in an ellipse $\Large \frac{x^2}{a^2}+\frac{y^2}{b^2}\normalsize = 1.$

(Note: This question has been split into 2 questions) This question appeared in 65-1,65-2 and 65-3 versions of the paper in 2013.

1 Answer

Comment
A)
$\textbf{Step 1}$:
Let $(a\cos \theta.b \sin \theta)$ be one of the vertices of the rectangle.
Hence the length=$2a \cos \theta$ and the width=$2b \sin \theta$
$\Rightarrow$ Area of the rectangle $A\; = 2a\cos \theta \times 2 b \sin \theta$ $=2ab.2 \sin \theta \cos \theta$
$\Rightarrow A =2ab\sin 2 \theta$
$\Rightarrow A'=2ab.2\cos 2 \theta$
$\textbf{Step 2}$:
For maximun or minimum values of A, $\rightarrow A'=0$
$\Rightarrow 4ab\cos 2 \theta=0$
$\Rightarrow \cos 2 \theta=\large \frac{\pi}{2}$ $\rightarrow \theta =\frac{\pi}{4}$
$\Rightarrow A =2ab \sin2\frac{\pi}{4}$
$\Rightarrow A=2ab \sin (\large\frac{\pi}{2})$$=2ab$
Now $A''=-8ab \sin 2 \theta \rightarrow \;$Area is maximum when $A=2ab$
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.
...