Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the particular solution of the differential equation $(\tan^{-1}y-x)dy=(1+y^2)dx$,given that when x=0,y=0.

Can you answer this question?

1 Answer

0 votes
  • A first order differential equation is an equation of the form $\frac{dy}{dx}+Px=Q$
  • The solution is given by $ye^{\int Pdx}=\int Qe^{\int Pdx}dx+c$
  • Note that $x$ and $y$ are interchangeable in the above equations.
  • Integration by parts: $\int udv=uv-\int vdu$
  • Integral of $e^x$ is $e^x$, i.e., $\int e^x dx = e^x + c$
  • If $y=0, tan^{-1} y = 0$.
Given: $(\tan ^{-1}y -x) dy=(1+y^2)dx$
$\textbf{Step 1: Re-write the differential equation in the standard form}$:
$\Rightarrow$ $(\tan ^{-1}y -x) dy=(1+y^2)dx \rightarrow \large\frac{dx}{dy}=\frac{\tan^{-1}y}{1+y^2} - \frac{x}{1+y^2}$
$=>\large\frac{dx}{dy}+\frac{x}{1+y^2}=\frac{\tan ^{-1}y}{1+y^2}$
This is a linear differential equation of the form: $\frac{dx}{dy}+Px=Q$.
The solution for this is given by $xe^{\int Pdy}=\int Qe^{\int Pdy}dy+c$
$\textbf{Step 2: Substitute for P and Q}$:
In the above equation, $P=\frac{1}{1+y^2}$ and $Q=\frac{\tan ^{-1}y}{1+y^2}$
$\Rightarrow P=\frac{1}{1+y^2}\rightarrow \int Pdy=\tan^{-1}y$
Therefore, the equation can be written as follows: L.H.S. = R.H.S: $xe^{\tan^{-1}y}=\large\int (\large\frac{\tan ^{-1}y}{1+y^2})$$(e^{\tan ^{-1}y}) dy+c$.
$\textbf{Step 3: Reduce using integration by parts}$:
Let us set up the equation in this form: $\int udv=uv-\int vdu$
Let $\tan ^{-1}y=t$ $\Rightarrow \frac{1}{1+y^2}dy=dt$
$\Rightarrow$ R.H.S, $\int e^{\tan ^{-1}y}.\frac{\tan^{-1}y}{1+y^2}dy$ can be expressed as follows: $\int e^t.t.dt$
Let $u=t$ and $e^tdt=dv \rightarrow$ $du=dt$ and $e^t=v$
Therefore, $\int t.e^t dt=t.e^t-\int e^t.dt$
Integral of $e^x$ is itself, i.e, $\int e^x dx = e^x + c$
$\Rightarrow \int t.e^t dt=t.e^t-e^t+c$
Therefore R.H.S. $\int e^{\tan ^{-1}y}.\frac{\tan^{-1}y}{1+y^2}dy =\int e^t.t.dt = te^t-e^t+c$
Since L.H.S. = R.H.S., $xe^{\tan ^{-1}y} = te^t-e^t+c$
Substituting for $t$, we get $xe^{\tan ^{-1}y}=\tan^{-1}y\;e^{\tan^{-1}y}-e^{\tan^{-1}y}+c$
$\Rightarrow x \tan^{-1}y=e^{\tan ^{-1}y}[\tan^{-1}y-1]+c$
$\textbf{Step 4: Evaluation the contstant c}$:
If $y=0, tan^{-1} y = 0$.
When $x=0, y=0$, the equation reduces to: $0 = e^0(0-1)+c$.
$\Rightarrow e^0 + c = 0 \rightarrow 1 + c = 0$
$\Rightarrow c = -1$
$\textbf{Step 5: Finding the general solution}$:
Substituting for $c=-1$ in $x \tan^{-1}y=e^{\tan ^{-1}y}[\tan^{-1}y-1]+c$
$\Rightarrow$ $x \tan ^{-1}y=e^{\tan^{-1}}[\tan^{-1}y-1]-1$
$\Rightarrow e^{\tan^{-1}y}(x-\tan^{-1}y+1)=1$


answered Mar 21, 2013 by meena.p
edited Mar 21, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App