Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the equation of the plane passing through the line of intersection of the planes $\overrightarrow{r}.(\hat{i}+3\hat{j})-6=0$ and $\overrightarrow{r}.(3\hat{i}-\hat{j}-4\hat{k})=0$,whose perpendicular distance from origin is unity.

(Note: This question has been split into 2 questions) This question appeared in 65-1,65-2 and 65-3 versions of the paper in 2013.
Can you answer this question?

1 Answer

0 votes
Let the plane$\overrightarrow{r}.\overrightarrow{n_1}=d_1$ be $\overrightarrow{r}.(\overrightarrow{i}+3\overrightarrow{j})=6 \rightarrow d_1=\frac{6}{\sqrt {10}}$
Let the other plane be $\overrightarrow{r}.\overrightarrow{n_2}=d_2$ be $\overrightarrow{r}.(\overrightarrow{3i}-\overrightarrow{j}-4\overrightarrow{k})=0 \rightarrow d_2=0$
$\textbf{Step 2}$:
Therefore $\overrightarrow{r}.(n_1+\lambda \overrightarrow{n_2})=d_1+\lambda d_2$ represents the plane passing through the intersection of the above two planes.
Given $d_1+\lambda d_2=1$ $\Rightarrow \lambda =\frac{\sqrt {10}}{6}$
$\textbf{Step 3}$:
Therefore the required equation is
$\overrightarrow{r}.\bigg[(\overrightarrow{i}+3\overrightarrow{j})+\frac{\sqrt {10}}{6}(3\overrightarrow{i}-\overrightarrow{j}-4\overrightarrow{k})\bigg]=1$
$\overrightarrow{r}.\bigg[6\overrightarrow{i}+18\overrightarrow{j}+3\sqrt {10}\overrightarrow{i}-10\overrightarrow{j}-4 \sqrt {10} \overrightarrow{k}\bigg]=6$
$\Rightarrow \overrightarrow{r}.[\overrightarrow{i}(6+3 \sqrt {10})+\overrightarrow{j}(18-\sqrt {10})-4 \sqrt {10}\overrightarrow{k})=6$
answered Mar 21, 2013 by meena.p
edited Mar 26, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App