Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the vector equation of the line passing through the point (1,2,3) and parallel to the planes $\overrightarrow{r}.(\hat{i}-\hat{j}+2\hat{k})=5$ and $\overrightarrow{r}.(3\hat{i}+\hat{j}+\hat{k})=6.$

(Note: This question has been split into 2 questions) This question appeared in 65-1,65-2 and 65-3 versions of the paper in 2013.
Can you answer this question?

1 Answer

0 votes
The required line planes through the point having its position vector $\overrightarrow{a}=\overrightarrow{i}+ 2\overrightarrow{j}+ 3\overrightarrow{k}$
The parallel planes are
$\overrightarrow{r}.(\hat {i}-\hat {j}+2\hat {k})=5$ and
$\overrightarrow{r}.(3\hat {i}+\hat {j}+\hat {k})=6$
Hence the required line is parallel to the vector is $\overrightarrow{b}=\overrightarrow{n_1} \times \overrightarrow{n_2}$
$\Rightarrow \overrightarrow{n_1} \times \overrightarrow{n_2}=\begin {vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & -1 & 2 \\ 3 & 1 & 1 \end{vmatrix}=\overrightarrow{i}(-1-2)-\overrightarrow{j}(1-6)+\overrightarrow{k}(1+3)$
$\overrightarrow{b}=-3\overrightarrow{i}+5 \overrightarrow{j}+4 \overrightarrow{k}$
Hence the equation of the required line is $\overrightarrow{r}=\overrightarrow{a} + \lambda \overrightarrow{b}$
$\overrightarrow{r}=(\overrightarrow{i}+2\overrightarrow{j}+3\overrightarrow{k})+\lambda (-3\overrightarrow{i}+5\overrightarrow{j}+4\overrightarrow{k})$
answered Mar 21, 2013 by meena.p
edited Mar 26, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App