Ask Questions, Get Answers

Want to ask us a question? Click here
0 votes

If $x^y=e^{x-y}$,prove that $\Large \frac{dy}{dx}=\frac{log x}{(1+log x)^2}$

Can you answer this question?

1 Answer

0 votes
Take log on both sides
$y\; log x=(x-y) log\; e \qquad (But\; log\;e=1)$
=>$y\; log\; x=x-y \qquad =>x=y(1+log\; x)$
differentiate on both sides,
$y.\large\frac{1}{x}+log\; x .\frac{dy}{dx}=1-\frac{dy}{dx}$
$=>\large\frac{dy}{dx}(1+\log x)=1-\frac{y}{x}$
Therefore $\large\frac{dy}{dx}=\frac{x-y}{x(1+log\;x)}$
Substituting for x-y, and x we get
$\large\frac{dy}{dx}=\frac{y\; log\; x}{y(1+log\;x)^2}$
Therefore $\large\frac{dy}{dx}=\frac{log \;x}{(1+\log\; x)^2}$
answered Mar 23, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App