Ask Questions, Get Answers

Want to ask us a question? Click here
0 votes

Evaluate :$\int\limits_0^{\pi}\large\frac{xsin x}{1+cos^2x}dx.$

Can you answer this question?

1 Answer

0 votes
$I=\large\int \limits_0^{\pi} \frac{x \sin x}{1+\cos ^2 x}$----(1) using the properties of integrals
$I=\large\int \limits_0^{\pi} \frac{(\pi-x) \sin (\pi -x)}{1+\cos ^2(\pi-x)}dx$
$I=\large\int \limits_0^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^2x}dx$----(2)
Adding (1) and (2)
$2I=\large\pi \int \limits_0^\pi \frac{\sin x}{1+\cos ^2x}dx$
Put $\cos x =t$
$-\sin x dx =dt$
x 0 1
t $\pi$ -1


$=>2I=\pi \int \limits_{+1}^{-1} \frac{-dt}{1+t^2}$
$=\pi \int \limits_{-1}^1\frac{dt}{1+t^2}$
$2I=-\pi \bigg[\tan^{-1}t\bigg]_{-1}^1$
$2I=+\pi \bigg[\tan^{-1}(1)-\tan^{-1}(-1)\bigg]$
Therefore $I=\large\frac{\pi^2}{4}$


answered Mar 22, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App