logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Find the principal value of the following: \[cos^{-1} \bigg( -\frac {1} {\sqrt 2} \bigg) \]

$\begin{array}{1 1} \frac{3\pi}{4} \\ -\frac{3\pi}{4} \\ \frac{\pi}{4} \\ - \frac{\pi}{4} \end{array} $

Can you answer this question?
 
 

2 Answers

0 votes
Ans : \( cos^{-1} \bigg( cos \bigg( \pi-\frac{\pi}{4} \bigg) \bigg) = \frac{3\pi}{4} \)
answered Feb 22, 2013 by thanvigandhi_1
 
0 votes
Toolbox:
  • The range of the principal value of $\cos^{-1}x$ is $\left [ 0,\pi \right ]$
  • $\cos (\pi - x) = -cos\; x$
Let $\cos^{-1}-(\frac{1}{\sqrt 2}) = x$ $ \Rightarrow \cos x = \frac{-1}{\sqrt 2}$
The range of the principal value of $\cos^{-1}x$ is $\left [ 0,\pi \right ]$
Therefore, $\cos x = \frac{-1}{\sqrt 2} = - \cos \frac{\pi}{4}$
Because $\cos (\pi - x) = -cos\; x$, $\cos x = cos (\pi - \frac{\pi}{4}) = \cos \frac{3\pi}{4}$
$\Rightarrow x = \frac{3 \pi}{4}$, where $x \;\epsilon \; \left [ 0,\pi \right ]$
Therefore, the principal value of $\cos^{-1} (\frac{-1}{\sqrt 2})$ is $\frac{3\pi}{4}$
answered Mar 2, 2013 by balaji.thirumalai
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...