Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the area of the region $\{(x,y):y^2\leq 6ax$ and $x^2+y^2\leq 16a^2\}$ using method of integration.

Can you answer this question?

1 Answer

0 votes
$x^2+y^2 \leq 16a^2$
Let us consider $x^2+y^2=16a^2$
This represents a circle with centre at the orgin and radius 4a
The praola is $y^2=6ax$
The required area bounded by the parabola $y^2=6ax$ and the circle $x^2+y^2=16a^2$ is shown by the shades portion.
The points of intersection can be found by solving the two equations:
substitute equ(2) in equ(1)
Therefore $x=-8a,2a$
If $x=-8a,$ y is imaginary
If $x=2a,y^2=12a^2=>y=\pm 2 \sqrt 3 a$
Therefore The points of intersection $(2a,2 \sqrt 3 a)\;ana\;(2a,-2 \sqrt 3 a)$
Therefore area=2 [area of OAMO+area of AMPA]
$=2\bigg[\int \limits_0^{2a} \sqrt {6ax}\; x+\int \limits_{2a}^{4a} \sqrt {16a^2-x^2}dx\bigg]$
$=2 \sqrt {6a} \bigg[\large\frac{x^{3/2}}{3/2}\bigg]_0^{2a}+2\bigg[\frac{x}{2}\sqrt {16a^2-x^2}+\frac{16a^2}{2} \sin^{-1}(\frac{x}{4a})\bigg]_{2a}^{4a}$
On Applying the limits,
$=2 \sqrt {6a} \times \large\frac{2}{3} \bigg[(2a)^{3/2}-0\bigg]+2\bigg[\frac{16a}{2} \sqrt {16a^2-16a^2}+\frac{16a^2}{2} \sin^{-1}(\frac{4a}{4a})-\frac{4a}{2} \sqrt {16a^2-4a^2}-\frac{16a^2}{2} \sin^{-1}(\frac{2a}{4a})\bigg]$
$=\large\frac{16a^2}{\sqrt 3}+0+16a^2 \sin^{-1}(1)-\frac{4a^2}{2} \sqrt{12}-16a^2 \sin^{-1}(1/2)$
$=\large\frac{16a^2}{\sqrt 3}+16a^2.\frac{\pi}{2}-4 \sqrt 3 a^2 - 16a^2 \frac{\pi}{6}$
$\large\frac{4a^2}{\sqrt 3}+\frac{16a^2 \pi}{3}$
$=\large\frac{4a^2}{3}(4 \pi+\sqrt 3) sq.units.$
answered Mar 26, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App