Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

What is the value of $tan\bigg(\frac{1}{2}sin^{-1}\frac{3}{4}\bigg)$

Can you answer this question?

1 Answer

0 votes
  • $sin^{-1}x = \tan^{-1}\large \frac{x}{\sqrt (1-x^2)}$
  • $\tan x=\large \frac{2\tan\frac{x}{2}}{1-tan^2\frac{x}{2}}$
Given $tan\bigg(\frac{1}{2}sin^{-1}\frac{3}{4}\bigg)$
$\textbf{Step 1}$:
Let $\theta = sin^{-1}\frac{3}{4} \rightarrow tan (\frac{1}{2}sin^{-1}\frac{3}{4}) = tan \frac{\theta}{2}$
We know that $sin^{-1}x = \tan^{-1}\large \frac{x}{\sqrt (1-x^2)}$
Therefore, if we assume that $\theta = sin^{-1}\frac{3}{4}$ this is $ = \tan^{-1}\large \frac{\large \frac{3}{4}}{\sqrt (1-(\large \frac{3}{4})^2)}$
$\Rightarrow \theta $$= \tan^{-1}\large \frac{\large \frac{3}{4}}{\sqrt \large\frac{16-9}{16}}$$ = tan^{-1} (\frac{3}{4} \times \frac{\sqrt16}{\sqrt7})$
$\Rightarrow \theta = tan^{-1} \frac{3}{\sqrt7}$
$\Rightarrow tan \theta = \frac{3}{\sqrt7}$
$\textbf{Step 2}$:
We know that $\tan x=\large \frac{2\tan\frac{x}{2}}{1-tan^2\frac{x}{2}}$
$\Rightarrow tan \theta =\large \frac{2\tan\frac{\theta}{2}}{1-tan^2\frac{\theta}{2}}$$= \frac{3}{\sqrt 7}$
$\Rightarrow 3-3\tan^2\frac{\theta}{2}=\frac{2}{\sqrt 7} \tan\frac{\theta}{2}$
$\Rightarrow$ $3\tan^2\frac{\theta}{2}+2\sqrt 7\tan\frac{\theta}{2}-3=0$
$\Rightarrow$ $\tan\frac{\theta}{2}=\large \frac{-2\sqrt 7\pm\sqrt(28+36)}{6}$
$\Rightarrow$ $\tan\frac{\theta}{2}=\large \frac{-2\sqrt 7\pm 8}{6} = \large \frac{-\sqrt 7\pm 4}{3}$
Since $sin\frac{\theta}{2}$ is acute, $tan\frac{\theta}{2}=\frac{4-\sqrt 7}{3}$
answered Mar 22, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App