Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

If $x\sin (a+y)+\sin a \cos(a+y)=0$,Prove that $\large\frac{dy}{dx}=\large\frac{\sin^2(a+y)}{\sin a}$

Can you answer this question?

1 Answer

0 votes
xsin(a+y)+sin acos(a+y)=0
(i.e) xsin(a+y)=-sin acos(a+y).
$\Rightarrow x=\Large \frac{-sin acos(a+y)}{sin(a+y)}$
$x=-sin a cot (a+y)$
Differentiating with respect to y on both sides
We know that $\frac{d}{dy}(cot(a+y))=-cosec^2(a+y)$
$\frac{dx}{dy}=-sin a(-cosec^2(a+y))$
$\quad\quad=sin a (cosec^2(a+y)$
But $cosec\theta=\frac{1}{sin\theta}$
$\Large \frac{dx}{dy}=\frac{sin a}{sin^2(a+y)}$
$\Large \frac{dy}{dx}=\frac{sin^2(a+y)}{sin a}$
answered Mar 25, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App