Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the area of the region $\{(x,4):y^2\leq 4x,4x^2+4y^2\leq9\}$ using method of integration.

Can you answer this question?

1 Answer

0 votes
This represents a circle with centre at the origin and radius $\frac{3}{2}$ and the parabola $y^2=4x$
The required area bounded by the parabola $y^2=4x$ and the circle $x^2+y^2=(\frac{3}{2})^2$ is shown by the shaded portion.
The point of intersection are
$x^2+4x=\frac{9}{4}\Rightarrow 4x^2+16x-9=0$
$\Rightarrow (2x+9)(2x-1)=0$
Therefore x=$\frac{1}{2}$ or $x=\frac{9}{2}$
If x=$\frac{1}{2}\Rightarrow y=\pm \sqrt 2$ and $x=\frac{9}{2}$,y is imaginary.
The points of intersections are ($\frac{1}{2}.\sqrt 2)$ and $\frac{1}{2},-\sqrt 2)$
Therefore Area=2[area of OAMO+area of AMPA]
$\qquad\qquad=2\begin{bmatrix}\int_0^{\frac{1}{2}}2\sqrt xdx+2\int_{\frac{1}{2}}^{\frac{3}{4}}\sqrt{\frac{9}{4}-x^2}dx\end{bmatrix}$
$\;\;=\frac{2\sqrt 2}{3}+\frac{9\pi}{8}-\frac{1}{\sqrt 2}-\frac{9}{4}sin^{-1}\frac{1}{3}$
Therefore $A=\frac{\sqrt 2}{6}+\frac{9\pi}{8}-\frac{9}{4}sin^{-1}\big(\frac{1}{3}\big)$ sq.units
answered Mar 25, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App