Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

\[ \text{If A = } \begin{bmatrix} 1&2 \\ 4&2 \end{bmatrix}, \text{then show that } |\;2A\;| = 4|\;A;|\]

Can you answer this question?

1 Answer

0 votes
  • If a matrix $A=\begin{vmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{vmatrix}$ be a matrix of order $2\times 2$,then $\mid A\mid=\begin{vmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{vmatrix}=a_{11}a_{22}-a_{21}a_{12}$
Given $A=\begin{vmatrix}1 & 2\\4 & 2\end{vmatrix}$ then show that $\mid 2A\mid=4\mid A\mid.$
Let the determinant of $A=\begin{vmatrix}1 & 2\\4 & 2\end{vmatrix}$
To evaluate the value of the determinant let us multiply $a_{11}$ and $a_{22}$ and $a_{21}$ and $a_{12}$ and then subtract both.
$\mid A\mid=1\times 2-4\times 2$
$4\mid A\mid =4\times -6$
$\mid 2A\mid=\begin{vmatrix}2 & 4\\8 & 4\end{vmatrix}$
After multiplying each element by 2
Hence following the above method to find the value of the determinant,
$\mid 2A\mid=2\times 4-8\times 4$
Hence from equ(1) and equ(2),we find that LHS=RHS.
(i.e)$\mid 2A\mid=4\mid A\mid$


answered Feb 20, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App