Email
Chat with tutor
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XII  >>  Math  >>  Integrals
Answer
Comment
Share
Q)

$\begin{equation} \int\limits_0^1 \sin^{-1} x \; \mathrm{d} x \end{equation}$


$(A)\; \frac{\pi}{2}+1 $
$(B)\; \frac{\pi}{4}+1 $
$(C)\; \frac{\pi}{4}-1 $
$(D)\; \frac{\pi}{2}-1 $

1 Answer

Comment
A)
$\begin{equation} \int\limits u\; \mathrm{d} v\end{equation}$ = $uv-\begin{equation} \int\limits v\; \mathrm{d} u\end{equation}$
Let $u = \sin^{-1}\; \; \; \; \; \; \; \; \; \; \; dv =dx$
$\; \; \; du = \frac{1}{\sqrt{1-x^2}} dx \; \; \; \; \; \; \; \; \; \; v = x$
$\therefore \begin{equation} \int\limits_0^1 \sin^{-1} x\ \mathrm{d} x \end{equation} = (x \sin^{-1} x)^1_0$ -$\begin{equation}\int\limits_0^1 \frac{x \;dx}{\sqrt{1-x^2}} \end{equation}$
put $1-x^2 = t $
$\implies -2 x \;dx = dt \; \; \; \; \therefore x\;dx = \frac{dt}{2}$
where x = 0 and x = 1
$ \; \; \; \; t = 1\;and \;t=0$
$\therefore \frac{-1}{2} \begin{equation} \int\limits_0^1 \frac{dt}{\sqrt t} \end{equation}$ = $-\frac{1}{2} [\frac{\sqrt t}{ {\frac {1}{2}} } ]_1^0 = +1$
$\therefore I = [x \; \sin^{-1} x]_0^1 - 1$
$ =[1 \; \; \sin^{-1} (1) \;\;0 \;\; -1]$
$=\frac{\pi}{2} - 1$
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.
...