logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Find the inverse of the following matrix : $\begin{bmatrix} 1 & 2 & -2 \\-1 & 3 & 0 \\0 & -2 & 1 \end{bmatrix}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Let $ A = [ a_{ij} ] $ be a square matrix x. Let $ A_{ij}$ be the cofactor of $ a_{ij}$. Then $ [ A_{ij}]$ is the matrix of cofactors and $ adj\: A $ ( or adjoint of the matrix A) is given by $ adj\: A=[A_{ij}]^T$
  • A determinant can be expanded by using the elements of any row or column.
  • The inverse of a non-singular square matrix A is given by $ A^{-1} = \frac{1}{|A|} adj\: A.$ A non-singular matrix is one whose determinant value is nonzero.
Step 1
$ A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$
$ |A| = \begin{vmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{vmatrix} = 1(3-0)+1(2-4)+0$
$ = 3-2 = 1 \neq 0$
$A$ is non-singular $ \therefore A^{-1}$ exists.
Step 2
To find $ adj\: A$
$ [A_{ij}] = \begin{bmatrix} (3-0) & -(-1-0) & (2-0) \\ -(2-4) & (1-0) & -(-2-0) \\ (0+6) & -(0-2) & (3+2) \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 & 2 \\ 6 & 2 & 5 \end{bmatrix}$
$adj\: A = [A_{ij}]^T = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$
Step 3
$ A^{-1} = \large\frac{1}{|A|} adj\: A = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$

 

answered May 21, 2013 by thanvigandhi_1
edited May 21, 2013 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...